The Simpler The Better: A Unified Approach to Predicting Original Taxi Demands based on Large-Scale Online Platforms

Yongxin Tong1, Yuqiang Chen2, Zimu Zhou3, Lei Chen4, Jie Wang5, Qiang Yang2,4, Jieping Ye5, Weifeng Lv1

1 SKLSDE Lab, Beihang University, 2 4Paradigm Inc., 3 ETH Zurich, 4 Hong Kong University of Science and Technology, 5 Didi Research

\{yxtong, lwf\}@buaa.edu.cn, 2 chenyuqiang@4paradigm.com, 3 zimu.zhou@tik.ee.ethz.ch, 4 \{leichen,qyang\}@cse.ust.hk, 5 \{wangjiejacob,yejieping\}@didichuxing.com

Target: UOTD Prediction

- OTD (Original Taxi Demand)
 - The number of taxi-calling orders \textit{submitted} to the online taxicab platform
 - Including orders that are cancelled finally

- UOTD (Unit Original Taxi Demand)
 - The number of taxi-calling orders \textit{submitted} to the online taxicab platform \textit{per unit time and per unit region}

Why we need to predict UOTD

- Expand Potential Market
- Assess Incentive Mechanisms
- Guide Taxi Dispatching

Key Methodology

- Two paradigms can be chosen
 - Complex (non-linear) models
 - Simple (linear) models

- In industrial practice, the latter one (Simple models + Massive features) is preferred
 - As it can Transform Model Redesign to Feature Redesign

Feature Engineering

- Basic Features
 - Temporal Features
 - Spatial Features
 - Meteorological Features
 - Event Features

- Combinational Features
 - Combine basic features based on business logics and data analysis
 - Express the joint influences of different basic features in a simple model

Model & Training

- Model
 - A linear regression model with high-dimensional features and a spatiotemporal regularizer

\[
\text{obj}_{\text{spatio-temporal}}(\mathbf{w}) = \sum_{X \subseteq D} \phi(\text{car}(\{w^T x| x \in X\}))
\]

- Distributed Training

Experiments